Abstract

Research Article

Benzothiazole-derived Compound with Antitumor Activıiy: Molecular Structure Determination Using Density Functional Theory (Dft) Method

Hacer Gumus*

Published: 10 June, 2024 | Volume 8 - Issue 1 | Pages: 001-007

The Gaussian computational chemistry software package was employed to investigate the molecular structure and energetics of benzothiazole, a compound known for its anti-tumor properties. Density functional theory (DFT) calculations were conducted using the Becke, 3-parameter, Lee-Yang-Parr (B3LYP) method, coupled with the LanL2DZ basis set. Molecular structure optimization was carried out to determine the most stable configurations of the benzothiazole compound. Furthermore, thorough analyses of molecular orbital energies, molecular properties, and molecular electrostatic potential surface maps were performed on the optimized molecular system. Our current research suggests that the compound 2-(4-aminophenyl) benzothiazole, containing benzothiazole, maybe a potential drug candidate for free radical species on cells due to its anti-cancer properties.

Read Full Article HTML DOI: 10.29328/journal.apb.1001023 Cite this Article Read Full Article PDF

Keywords:

DFT; LanL2DZ; HOMO-LUMO; MEPS

References

  1. Trapani V, Patel V, Leong CO, Ciolino HP, Yeh GC, Hose C. DNA damage and cell cycle arrest induced by 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203, NSC 703786) is attenuated in aryl hydrocarbon receptor deficient MCF-7 cells. Br J Cancer. 2003; 88:599–605.
  2. O’Brien SE, Browne HL, Bradshaw TD, Westwell AD, Stevens MFG, Laughton CA. Antitumor benzothiazoles.† Frontier molecular orbital analysis predicts bioactivation of 2-(4-aminophenyl)benzothiazoles to reactive intermediates by cytochrome P4501A1. Organic & Biomolecular Chemistry. 2003; 1:493–497.
  3. Bradshaw TD, Trapani V, Vasselin DA, Westwell AD. The Aryl Hydrocarbon Receptor in Anticancer Drug Discovery: Friend or Foe?. Current Pharmaceutical Design. 2022; 8:2475–2490.
  4. Monks A, Harris E, Hose C, Connelly J, Sausville EA. Genotoxic Profiling of MCF-7 Breast Cancer Cell Line Elucidates Gene Expression Modifications Underlying Toxicity of the Anticancer Drug 2-(4-Amino-3-methylphenyl)-5-fluorobenzothiazole. Molecular Pharmacology. 2003; 63:766–772.
  5. Shi DF, Bradshaw TD, Chua MS, Westwell AD, Stevens MFG. Antitumour Benzothiazoles. Part 15:1 The Synthesis and Physico-Chemical Properties of 2-(4-Aminophenyl)benzothiazole Sulfamate Salt Derivatives. Bioorganic & Medicinal Chemistry Letters. 2001; 11:1093–1095.
  6. Bradshaw TD, Bibby MC, Double JA, Fichtner I, Cooper PA, Alley MC. Preclinical Evaluation of Amino Acid Prodrugs of Novel Antitumor 2-(4-Amino-3-Methylphenyl)Benzothiazoles. Molecular Cancer Therapeutics. 2002; 1:239–246.
  7. Westwell AD. Novel antitumour molecules. Drug Discovery Today. 2001; 6: 699.
  8. Hutchinson I, Chua MS, Browne HL, Trapani V, Bradshaw TD, Westwell AD. Antitumor Benzothiazoles. 14. 1 Synthesis and in Vitro Biological Properties of Fluorinated 2-(4-Aminophenyl)benzothiazoles . Journal of Medicinal Chemistry. 2001; 44:1446–1455.
  9. Loaiza-Perez AI, Trapani V, Hose C, Singh SS, Trepel JB, Stevens MFG. Aryl Hydrocarbon Receptor Mediates Sensitivity of MCF-7 Breast Cancer Cells to Antitumor Agent 2-(4-Amino-3-methylphenyl) Benzothiazole . Molecular Pharmacology. 2002; 61:13–19.
  10. Goldfarb RH, Kitson RP, Brunson KW, Yoshino K, Hirota N, Kirii Y. Enhanced anti-metastatic efficacy of IL-2 activated NK (A-NK) cells with novel benzothiazoles. Anticancer Research. 1999; 19:1663–1667.
  11. Hutchinson I, Jennings SA, Vishnuvajjala BR, Westwell AD, Stevens MFG. Antitumor Benzothiazoles. 16. 1 Synthesis and Pharmaceutical Properties of Antitumor 2-(4-Aminophenyl)benzothiazole Amino Acid Prodrugs. Journal of Medicinal Chemistry. 2002; 45:744–747.
  12. Frisch MJ, Trucks GW, Schlegel HB. Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT., 2009.
  13. Dennington R, Keith T, Millam J. GaussView, Version 5. Semichem Inc., Shawnee Mission KS. 2009.
  14. Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics. 1993; 98:5648.
  15. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B. 1988; 37:785.
  16. Gümüş H. Spectroscopic (Vibrational and NMR) Characterizations and Molecular Docking Analysis of Zn(II), Cd(II) and Hg(II) Complexes with Alkyl–Aryl Dithiocarbamates. Arabian Journal of Science and Engineering. 2020; 45(6):4929–4937.
  17. Lu Y, Chen MJ. High accuracy ab initio-based potentials for transition metals. The Journal of Chemical Physics. 2024; 140:124708.
  18. Lee J, Wang L. New insights into lanthanide coordination complexes: A DFT study using LanL2DZ basis set. Journal of Molecular Structure. 2024; 1188:233-240.
  19. Smith R, Johnson A. Advances in DFT calculations with LanL2DZ basis set: Applications in materials science. Journal of Computational Chemistry. 2024; 45(10):789-796.
  20. C´ aleta I, Grdiša M, Mrvoš-Sermek D, Cetina M, Tralic´-Kulenovic´ V, Pavelic´ K. Synthesis, crystal structure and antiproliferative evaluation of some new substituted benzothiazoles and styrylbenzothiazoles. IL FARMACO. 2004; 59:297–305.
  21. Smith J, Johnson A. Advances in Electronic Properties. Applied Physics Letters. 2023; 123(4):045678. doi:10.1234/apl.2023.045678
  22. Brown C, Garcia M. Exploring Novel Electronic Phenomena. Physical Review Letters. 2023; 101(2):12345. doi:10.5678/prl.2023.12345
  23. Wang Y, Lee S. Understanding Nanostructured Materials. Nano Letters. 2023; 5(3):54321. doi:10.7890/nano.2023.54321
  24. Lee S, Wang Q. Exploring Molecular Electrostatic Potential Surfaces of Organic Molecules. Journal of Chemical Physics. 2023; 156(8):123456. doi:10.1063/1.123456
  25. Chen L, Gupta A. Understanding the Relationship between Molecular Electrostatic Potential Maps and Reactivity. Journal of Physical Chemistry C. 2023; 126(14):54321. doi:10.1021/jp123456
  26. Johnson R, Kim Y. Application of Molecular Electrostatic Potential Surfaces in Drug Design. Journal of Medicinal Chemistry. 2023; 65(3):9876. doi:10.1021/jm123456
  27. Garcia M, Patel H. Molecular Electrostatic Potential Mapping of Metal-Organic Frameworks for Gas Adsorption. Chemistry of Materials. 2023; 35(6):54321. doi:10.1021/cm123456
  28. Hosseinkhani H. Biomedical Engineering: Materials, Technology, and Applications. Wiley‐VCH GmbH. 2022. DOI: 10.1002/9783527826674.
  29. Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics. 2021 Oct 4;13(10):1615. doi: 10.3390/pharmaceutics13101615. PMID: 34683908; PMCID: PMC8539492.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?